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Including statements that are 

incorrect at the application-layer
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Public-key distribution (PKD)
- HTTPS
- Secure messaging
- "We assume a PKI."

Tor Directory Servers

Software transparency schemes
- Attacks on Bitcoin binaries

Where is non-equivocation necessary?
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Contributions
● Bitcoin-based append-only log,

● ...as hard-to-fork as the Bitcoin blockchain

○ Want to fork? Do some work!

● ...but efficiently auditable

○ 600 bytes / statement (e.g., PKD digests)

○ 80 bytes / Bitcoin block

● Java implementation (3500 SLOC)
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Bitcoin blockchain

PKA minted 4Ƀ       from SKA PKB has 3Ƀ

● Transactions mint coins
● Output = # of coins and owner's PK
● Transactions transfer coins (and pay fees)
● Input = hash pointer to output & digital signature
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txc

s1

Bitcoin blockchain

PKB has 3Ƀ       from SKB PKC has 2Ƀ

Bob gives Carol 2Ƀ,
Bitcoin miners collected another Ƀ as a fee.



Bitcoin blockchain
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No double-spent coins: A TXN output can 
only be referred to by a single TXN input.
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● Genesis TXN (GTX) = log's "public key"
● Coins from server back to server (minus fees)
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● TX2 "spends" TX1's output, publishes s2
● Coins from server back to server (minus fees)
● Inconsistent s2' would require a double-spend
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Appending to a Catena log

● Server is compromised, still cannot equivocate.
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Advantages: 
(1) Hard to fork 
(2) Efficient to verify

Disadvantages: 
(1) 6-block confirmation delay
(2) 1 statement every 10 minutes
(3) Must pay Bitcoin TXN fees

TX1 TX2

Next, 

unique s3

Appending to a Catena log
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Auditing bandwidth

e.g., 460K block headers + 10K statements = ~41 MB 
(80 bytes each) (around 600 bytes each)
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Q: Next block header(s)?

Catena client 2

Catena client 1

Catena client 100,000?

Q: Next block header(s)?

Q: Next block header(s)?

...

100,000 Catena clients 
⇒ "Unintended" DDoS 

attack on Bitcoin.
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Conclusions

What we did: 
- Enabled applications to efficiently leverage Bitcoin's 

publicly-verifiable consensus
- Download transactions selectively rather than full blockchain
- ~41 MB instead of gigabytes of bandwidth

Why it matters:
- Public-key directories for HTTPS and secure messaging
- Tor Consensus Transparency
- Software transparency schemes
- Turn fork consistency into full consistency

For more, read our paper!

http://eprint.iacr.org/2016/1062


Ask me questions!

Block j Block n

s1 s2

s'3

Block i Block j Block n

s1 s2
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s'3

s3

Block i

No inconsistent s'3 
as it would require 

a double-spend!

Need to download 
full blocks to find 

inconsistent s'3
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https://github.com/alinush/catena-java

https://github.com/alinush/catena-java
https://github.com/alinush/catena-java
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Bitcoin: The full picture

blocki

A ➝   ,
95K

A ➝   ,
95K

B ➝ A, 
$100K

Peer-to-peer network

Miners

A

Customers Merchants

Payment 

verification
A ➝    , $95K

blockj

A ➝    , $95K



Catena transaction format

txi
"Change" coins back to server
(public key)

Unspendable OP_RETURN 
output with arbitrary data

Coins from server 
for paying TX fees
(digital signature)

A single spendable output ⇒ No forks txjtxi

txk

<data>



BKD: A Bitcoin-backed PKD

Catena: Hard-to-fork, append-only log (Bitcoin-backed)

A B

A' B'

E D

A" B" D'C

TX TXTX

t1
t3t2

BKD: Hard-to-fork public-key directory (Catena-backed)
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Bitcoin blockchain

Block i Block j

Blockchain forks ⇔ Double-spent coins

Block n
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Previous work
"Liar, liar, coins on fire!" (CCS '15)

SIGSK(tx1[0], tx2) tx2[0] = (2Ƀ, PK')

SK, PK

extractSK()
secret key SK

signSK(i, s)

signSK(i, s')



tx2tx1

Previous work
"Liar, liar, coins on fire!" (CCS '15)

SK, PK

Disincentivizes equivocation by 
locking Bitcoin funds under SK.
Does not prevent equivocation 
by malicious outsiders!

tx2[0] = (2Ƀ, PK')SIGSK(tx1[0], tx2)


