
Catena: Efficient Non-equivocation
via Bitcoin

Tuesday, May 23rd, 2017

Alin Tomescu
alinush@mit.edu

Srinivas Devadas
devadas@mit.edu

IEEE Security & Privacy 2017, San Jose, CA

What is non-equivocation?

Public-key
directory

What is non-equivocation?

● At time i, publishes digest si

Public-key
directory

What is non-equivocation?

● At time i, publishes a single digest si

Public-key
directory

What is non-equivocation?

PKA PKB

t1
Bob

Alice

● At time i, publishes a single digest si
● At time 1, Alice, Bob and others "see" s1

s1 = SHA256(t1)

Public-key
directory

Bob

Alice

What is non-equivocation?

t2

PKA PKB

t1

PKA PKB

s1 = SHA256(t1) s2 = SHA256(t2)

●
● At time 2, Alice, Bob and others "see" s1 , s2 , ...

Public-key
directory

Bob

Alice

What is non-equivocation?

t2

PKA PKB

t1

PKA PKB

s1 = SHA256(t1) s2 = SHA256(t2)

● Alice and Bob can "monitor" own PKs

Public-key
directory

Bob

Alice

What is non-equivocation?

t2

PKA PKB

t1

PKA PKB

s1 = SHA256(t1) s2 = SHA256(t2)

● Alice and Bob can "monitor" own PKs

Bob

Alice

What is non-equivocation?

t2

PKA PKB

t1

PKA PKB PKA'

s1 = SHA256(t1) s2 = SHA256(t2)

● Alice and Bob can "monitor" own PKs
● ...and server has to impersonate in plain sight

Public-key
directory

Bob

Alice

What is non-equivocation?

t2

PKA PKB

t1

PKA PKB PKA'

s1 = SHA256(t1) s2 = SHA256(t2)

Public-key
directory

● Alice and Bob can "monitor" own PKs
● ...and server has to impersonate in plain sight

Good: "Stating the same thing to all people."

Bob

Alice

What is non-equivocation?

t2

PKA PKB

t1

PKA PKB PKA'

s1 = SHA256(t1) s2 = SHA256(t2)

Public-key
directory

Good: "Stating the same thing to all people."

Bob

Alice

What is non-equivocation?

t2

s1 = SHA256(t1) s2 = SHA256(t2)

PKA PKB

t1

PKA PKB PKA'

Including statements that are

incorrect at the application-layer

Public-key
directory

What is equivocation?

S1

PKA PKB

t1

● At time 2, malicious server publishes s2 and s2'

Public-key
directory

Alice

t2

PKA PKB PKB'

What is equivocation?

PKA PKB

t1

Public-key
directory

S1

S2

● s2: Leave Alice's key intact, add fake PKB' for Bob

Bob

Alice

t2'

PKA PKB PKA'

t2

PKA PKB PKB'

What is equivocation?

PKA PKB

t1

Public-key
directory

S1

S2

S2'

● s2': Leave Bob's key intact, add fake PKA' for Alice

Bob

Alice

t2'

PKA PKB PKA'

t2

PKA PKB PKB'

What is equivocation?

PKA PKB

t1

Public-key
directory

S1

S2

S2'

● Alice not impersonated in her view, but Bob is.

Bob

Alice

t2'

PKA PKB PKA'

t2

PKA PKB PKB'

What is equivocation?

PKA PKB

t1

Public-key
directory

S1

S2

S2'

● Bob not impersonated in his view, but Alice is.

MITM

Bob

Alice

t2'

PKA PKB PKA'

t2

PKA PKB PKB'

What is equivocation?

PKA PKB

t1

Public-key
directory

S1

S2

S2'

● Obtain fake keys for each other ⇒ MITM

MITM

Bob

Alice

t2'

PKA PKB PKA'

t2

PKA PKB PKB'

Bad: "Stating different things to different people.'"

What is equivocation?

PKA PKB

t1

Public-key
directory

S1

S2

S2'

Where is non-equivocation necessary?

Public-key distribution (PKD)
- HTTPS
- Secure messaging
- "We assume a PKI."

Public-key distribution (PKD)
- HTTPS
- Secure messaging
- "We assume a PKI."

Tor Directory Servers

Where is non-equivocation necessary?

Public-key distribution (PKD)
- HTTPS
- Secure messaging
- "We assume a PKI."

Tor Directory Servers

Software transparency schemes
- Attacks on Bitcoin binaries

Where is non-equivocation necessary?

Contributions

Contributions
● Bitcoin-based append-only log,

Contributions
● Bitcoin-based append-only log,

● ...as hard-to-fork as the Bitcoin blockchain

○ Want to fork? Do some work!

Contributions
● Bitcoin-based append-only log,

● ...as hard-to-fork as the Bitcoin blockchain

○ Want to fork? Do some work!

● ...but efficiently auditable

Contributions
● Bitcoin-based append-only log,

● ...as hard-to-fork as the Bitcoin blockchain

○ Want to fork? Do some work!

● ...but efficiently auditable

○ 600 bytes / statement (e.g., PKD digests)

○ 80 bytes / Bitcoin block

Contributions
● Bitcoin-based append-only log,

● ...as hard-to-fork as the Bitcoin blockchain

○ Want to fork? Do some work!

● ...but efficiently auditable

○ 600 bytes / statement (e.g., PKD digests)

○ 80 bytes / Bitcoin block

● Java implementation (3500 SLOC)

Outline

1. Bitcoin background
2. Previous work
3. Catena design
4. Catena scalability

Block nBlock i Block j

Bitcoin blockchain

Block nBlock i Block j

Bitcoin blockchain

● Hash chain of blocks

Block nBlock i Block j

Bitcoin blockchain

● Hash chain of blocks
○ Arrows are hash pointers

Block nBlock i Block j

Bitcoin blockchain

● Hash chain of blocks
○ Arrows are hash pointers

● Merkle tree of TXNs in each block

Block nBlock i Block j

Bitcoin blockchain

● Hash chain of blocks
○ Arrows are hash pointers

● Merkle tree of TXNs in each block
● Proof-of-work (PoW) consensus

Block nBlock i Block j

txa

Bitcoin blockchain

● Transactions mint coins

Block nBlock i Block j

Bitcoin blockchain

● Transactions mint coins
● Output = # of coins and owner's PK

txa

PKA minted 4Ƀ

Block nBlock i Block j

txa

Bitcoin blockchain

PKA minted 4Ƀ

txb

PKB has 3Ƀ

● Transactions mint coins
● Output = # of coins and owner's PK
● Transactions transfer coins (and pay fees)

Block nBlock i Block j

txb

txa

Bitcoin blockchain

PKA minted 4Ƀ from SKA PKB has 3Ƀ

● Transactions mint coins
● Output = # of coins and owner's PK
● Transactions transfer coins (and pay fees)
● Input = hash pointer to output & digital signature

Block nBlock i Block j

txb

txa

s1

Bitcoin blockchain

PKA minted 4Ƀ from SKA

Arbitrary
statement s1

PKB has 3Ƀ

Data can be embedded in TXNs.

Block nBlock i Block j

txb

txa

Bitcoin blockchain

PKA minted 4Ƀ from SKA PKB has 3Ƀ

Alice gives Bob 3Ƀ,
Bitcoin miners collected 1Ƀ as a fee.

s1

Block nBlock i Block j

txb

txc

s1

Bitcoin blockchain

PKB has 3Ƀ from SKB PKC has 2Ƀ

Bob gives Carol 2Ƀ,
Bitcoin miners collected another Ƀ as a fee.

Bitcoin blockchain

Block i Block j Block n

s1

txb

txc

txc'

No double-spent coins: A TXN output can
only be referred to by a single TXN input.

Moral of the story

TX1

TX2'

TX2

Proof-of-work (PoW) consensus ⇒ No double spends

Either TX2 or TX2'
but not both!

Moral of the story

TX1

TX2'

TX2

Proof-of-work (PoW) consensus ⇒ No double spends

Either s2 or s2'
but not both!s1

s2

s'2

Outline

1. Bitcoin background
2. Previous work
3. Catena design
4. Catena scalability

Previous work

Block i Block j Block n

s1 s2
TX TX

TX s3

Previous work

Block i Block j Block n

Need to download
full blocks to find

inconsistent s'3

s1 s2
TX TX

TX s3

TX s'3

Our work

Block i Block j Block n

s1 s2
TX TX

TX s3

TX s'3

No inconsistent s'3 as
it would require a

double-spend!

Previous work

Block i Block j Block n

s1 s2
TX TX

TX s3

TX s'3

Our work

Block i Block j Block n

s1 s2
TX TX

TX s3

TX s'3

Outline

1. Bitcoin background
2. Previous work
3. Catena design
4. Catena scalability

Catena
log server

Server's
funds

Starting a Catena log

GTX

Block i

Genesis TXN
Catena

log server

Starting a Catena log

● Genesis TXN (GTX) = log's "public key"
● Coins from server back to server (minus fees)

s1
GTX

Block i Block j

Catena
log server

TX1

Appending to a Catena log

● TX1 "spends" GTX's output, publishes s1
● Coins from server back to server (minus fees)
● Inconsistent s1' would require a double-spend

s1
GTX TX1

Block i Block j

s2
TX2

Block n

Catena
log server

Appending to a Catena log

● TX2 "spends" TX1's output, publishes s2
● Coins from server back to server (minus fees)
● Inconsistent s2' would require a double-spend

s1
GTX

Block i Block j

Catena
log server

s2

Block n

Next,

unique s3

TX1 TX2

Appending to a Catena log

● Server is compromised, still cannot equivocate.

s1
GTX

Block i Block j

Catena
log server

s2

Block n

Next,

unique s3

Advantages:
(1) Hard to fork
(2) Efficient to verify

TX1 TX2

Appending to a Catena log

s1
GTX

Block i Block j

Catena
log server

s2

Block n

Advantages:
(1) Hard to fork
(2) Efficient to verify

Disadvantages:
(1) 6-block confirmation delay
(2) 1 statement every 10 minutes
(3) Must pay Bitcoin TXN fees

TX1 TX2

Next,

unique s3

Appending to a Catena log

Efficient auditing

Efficient auditing

Catena
log server

Catena
client

Efficient auditing

Catena
log server

Catena
client

Bitcoin P2P
(7000 nodes)

Efficient auditing

Catena
log server

Catena
client

Header i

GTX

Bitcoin P2P
(7000 nodes)

Catena
log server

Catena
client

Header i

GTX

Bitcoin P2P
(7000 nodes)

Q: Next block header(s)?

Efficient auditing

Catena
log server

Catena
client

Header i

GTX

Bitcoin P2P
(7000 nodes)

Header i+1 Header j

Efficient auditing

80 bytes each

Catena
log server

Catena
client

Header i Header j

GTX

Bitcoin P2P
(7000 nodes)

Efficient auditing

Catena
log server

Catena
client

Header i Header j

GTX

Bitcoin P2P
(7000 nodes)

Q: What is s1 in the log?

Efficient auditing

Catena
log server

Catena
client

Header i Header j

GTX

Bitcoin P2P
(7000 nodes)

TX1 s1

Efficient auditing

600 bytes

Catena
log server

Catena
client

Header i Header j

TX1 s1
GTX

Bitcoin P2P
(7000 nodes)

Efficient auditing

Catena
log server

Catena
client

Header i Header j

TX1 s1
GTX

Bitcoin P2P
(7000 nodes)

Q: Next block header(s)?

Efficient auditing

Catena
log server

Catena
client

Header i Header j

TX1 s1
GTX

Bitcoin P2P
(7000 nodes)

Header j+1 Header n

Efficient auditing

Catena
log server

Catena
client

Header i Header j Header n

TX1 s1
GTX

Bitcoin P2P
(7000 nodes)

Efficient auditing

Catena
log server

Catena
client

Header i Header j Header n

TX1 s1
GTX

Bitcoin P2P
(7000 nodes)

Q: What is s2 in the log?

Efficient auditing

Catena
log server

Catena
client

Header i Header j Header n

TX1 s1
GTX

Bitcoin P2P
(7000 nodes) TX2 s2

Efficient auditing

Catena
log server

Catena
client

Header i Header j Header n

TX1 s1
GTX TX2 s2

Bitcoin P2P
(7000 nodes)

Efficient auditing

Auditing bandwidth

e.g., 460K block headers + 10K statements = ~41 MB
(80 bytes each) (around 600 bytes each)

Outline

1. Bitcoin background
2. Previous work
3. Catena design
4. Catena scalability

Catena scalability

Catena client 2

Catena client 1

Catena client 100,000?

...

 P2P
~7000 full nodes

Supports up to ~819,000
incoming connections

 P2P
~7000 full nodes

Supports up to ~819,000
incoming connections

Catena scalability

Catena client 2

Catena client 1

Catena client 100,000?

Q: Next block header(s)?

...

Q: Next block header(s)?

Q: Next block header(s)?

Catena scalability

 P2P
~7000 full nodes

Supports up to ~819,000
incoming connections

Q: Next block header(s)?

Catena client 2

Catena client 1

Catena client 100,000?

Q: Next block header(s)?

Q: Next block header(s)?

...

100,000 Catena clients
⇒ "Unintended" DDoS

attack on Bitcoin.

Catena scalability

Header Relay Network (HRN)
Volunteer nodes

Blockchain explorers
Facebook, Twitter, GitHub,

etc.

...

 P2P

Header 1 Header n

Catena client 2

Catena client 1

Catena client 100,000

Catena scalability

Header Relay Network (HRN)
Volunteer nodes

Blockchain explorers
Facebook, Twitter, GitHub,

etc.

Q: Next block header(s)?

...

 P2P

Header 1 Header n

Catena client 2

Catena client 1

Catena client 100,000

Q: Next block header(s)?

Q: Next block header(s)?

Q: Next block header(s)?

Q: Next block header(s)?

Q: Next block header(s)?

Catena scalability

Header Relay Network (HRN)
Volunteer nodes

Blockchain explorers
Facebook, Twitter, GitHub,

etc.

...

 P2P

Header 1 Header n

Catena client 2

Catena client 1

Catena client 100,000

Conclusions

Conclusions

What we did:
- Enabled applications to efficiently leverage Bitcoin's

publicly-verifiable consensus
- Download transactions selectively rather than full blockchain
- ~41 MB instead of gigabytes of bandwidth

Conclusions

What we did:
- Enabled applications to efficiently leverage Bitcoin's

publicly-verifiable consensus
- Download transactions selectively rather than full blockchain
- ~41 MB instead of gigabytes of bandwidth

Why it matters:
- Public-key directories for HTTPS and secure messaging
- Tor Consensus Transparency
- Software transparency schemes
- Turn fork consistency into full consistency

Conclusions

What we did:
- Enabled applications to efficiently leverage Bitcoin's

publicly-verifiable consensus
- Download transactions selectively rather than full blockchain
- ~41 MB instead of gigabytes of bandwidth

Why it matters:
- Public-key directories for HTTPS and secure messaging
- Tor Consensus Transparency
- Software transparency schemes
- Turn fork consistency into full consistency

For more, read our paper!

http://eprint.iacr.org/2016/1062

Ask me questions!

Block j Block n

s1 s2

s'3

Block i Block j Block n

s1 s2

s3

s'3

s3

Block i

No inconsistent s'3
as it would require

a double-spend!

Need to download
full blocks to find

inconsistent s'3

Pr
ev

io
us

 w
or

k
C

at
en

a
https://github.com/alinush/catena-java

https://github.com/alinush/catena-java
https://github.com/alinush/catena-java

Extra slides

Paym
ent T

Xs

Bitcoin: The full picture

blocki

A ➝ ,
95K

A ➝ ,
95K

B ➝ A,
$100K

Peer-to-peer network

Miners

A

Customers Merchants

Payment

verification
A ➝ , $95K

blockj

A ➝ , $95K

Catena transaction format

txi
"Change" coins back to server
(public key)

Unspendable OP_RETURN
output with arbitrary data

Coins from server
for paying TX fees
(digital signature)

A single spendable output ⇒ No forks txjtxi

txk

<data>

BKD: A Bitcoin-backed PKD

Catena: Hard-to-fork, append-only log (Bitcoin-backed)

A B

A' B'

E D

A" B" D'C

TX TXTX

t1
t3t2

BKD: Hard-to-fork public-key directory (Catena-backed)

Block n'

Bitcoin blockchain

Block i Block j

Blockchain forks ⇔ Double-spent coins

Block n

s1

txb

txc

txc'

Previous work
"Liar, liar, coins on fire!" (CCS '15)

tx1

Previous work
"Liar, liar, coins on fire!" (CCS '15)

tx1[0] = (2Ƀ, PK)

SK, PK

tx1

Previous work
"Liar, liar, coins on fire!" (CCS '15)

tx1[0] = (2Ƀ, PK)

SK, PK

signSK(i, s)

signSK(i, s')

tx1

Previous work
"Liar, liar, coins on fire!" (CCS '15)

SK, PK

signSK(i, s)

signSK(i, s')

extractSK()
secret key SK

tx2tx1

Previous work
"Liar, liar, coins on fire!" (CCS '15)

SIGSK(tx1[0], tx2) tx2[0] = (2Ƀ, PK')

SK, PK

extractSK()
secret key SK

signSK(i, s)

signSK(i, s')

tx2tx1

Previous work
"Liar, liar, coins on fire!" (CCS '15)

SK, PK

Disincentivizes equivocation by
locking Bitcoin funds under SK.
Does not prevent equivocation
by malicious outsiders!

tx2[0] = (2Ƀ, PK')SIGSK(tx1[0], tx2)

